浅谈TS运行时类型检查

467次阅读  |  发布于1年以前

What-什么是运行时类型检查?

编译时类型检查(静态类型检查):

在编译阶段对变量类型进行静态检查,编译后的代码不保留任何类型标注信息,对实际代码运行没有影响

运行时类型检查(动态类型检查):

在代码实际运行过程中对数据类型进行检查,一般会用在约束函数参数、返回值这类内外部之间传递数据

Why-为什么需要运行时类型检查?

TypeScript 对于前端项目可维护性提升很大,也能帮我们保障内部编码时的类型安全,但在和外部进行数据传递时,仅仅有编译期类型检查还是免不了出一些问题,以我遇过的两次事故为例:

  1. 对内输入数据:线上接口返回的视频id字段类型由 string 变为 number 后前端获取后丢失精度,导致页面异常
  2. 向外输出数据:项目迭代需求时逻辑改动导致某个埋点字段丢失,过了很久要分析数据才发现,白白浪费了时间

如果我们在运行时做了相应的类型检查,发现异常上报监控,问题就能更早解决了,还有其他能想到的一些需要运行时类型检查的场景:

  1. 表单场景类型校验
  2. 为API/JSB接口编写测试
  3. 上报参数过滤敏感信息字段

可以看出,在涉及IO数据场景时额外的运行时检查是有必要的,以使数据类型不符合预期时,我们能及时发现问题。

How-怎么做运行时类型检查?

interface MyDataType {
    video_id: string;
    user_info: {
        user_id: number;
        email: string;
    };
    image_list: {
        url: string
    }[];
}

const data: MyDataType = await fetchMyData()

if (
    typeof data.video_id === 'string' &&
    data.user_info &&
    typeof data.user_info.user_id === 'number' &&
    typeof data.user_info.email === 'string' &&
    Array.isArray(data.image_list) &&
    data.image_list.every((image) => typeof image.url === 'string')
    ...
) {
    // do something
}

如上,我们可以手动编写一份运行时类型检查代码,但这样写起来效率低、维护性差,而且没有用上已有的TS类型,导致我们要同时维护两份类型,保证之间的同步。

下面向大家介绍业内几种类型检查方案,个人认为一个好方案至少要满足两点:

  1. 只需维护一份类型规则即可享有静态类型提示和运行时检查校验
  2. 在静态和运行时的类型检查能力等价(起码运行时不能比静态检查宽松,不然会出线上bug)

方案1-动态 to 静态

编写运行时校验规则,并从中提取出静态类型

JSON 形式

通过编写 JSON 来描述校验规则,典型的有 ajv、tv4,用法如下:

import Ajv, { JTDDataType } from "ajv/dist/jtd"

const ajv = new Ajv()
const schema = {
    properties: {
        video_id: { type: "string" },
        user_info: {
            properties: {
                user_id: { type: "int32" },
                email: { type: "string" }
            }
        },
        image_list: {
            elements: {
                properties: {
                    url: { type: "string" },
                }
            }
        }
    }
} as const
type MyDataType = JTDDataType<typeof schema>
// type MyDataType = {
//     video_id: string;
//     user_info: {
//         user_id: number;
//         email: string;
//     } & {};
//     image_list: ({
//         url: string;
//     } & {})[];
// } & {}

const data: MyDataType = await fetchMyData()

const validate = ajv.compile(schema)
validate(data)
if (validate.errors) {
    // do something
}

优点:

缺点:

实现原理:

API 形式

通过调用API来描述组成校验规则,典型例子有 zod 、superstruct、io-ts,用法如下:

import { z } from "zod";

const schema = z.object({
    video_id: z.string(),
    user_info: z.object({
        user_id: z.number().positive(),
        email: z.string().email()
    }),
    image_list: z.array(z.object({
        url: z.string()
    }))
  });

type MyDataType = z.infer<typeof schema>
// type MyDataType = {
//     video_id: string;
//     user_info: {
//         user_id: number;
//         email: string;
//     };
//     image_list: {
//         url: string;
//     }[];
// }

const data: MyDataType = await fetchMyData()

const parseRes = schema.safeParse(data)
if (parseRes.error) {
    // do something
}

优点:

缺点:

实现原理:

和JSON形式类似,但实现更轻量(ajv有35k,zod只有10k)

方案2-静态 + 动态

把静态类型和动态类型检查写在一起

主要是基于类属性装饰器来生成校验规则,典型例子有 class-validator、typeorm,用法如下:

import 'reflect-metadata'
import { plainToClass, Type } from "class-transformer";
import { 
    validate,
    IsString,
    IsInt,
    IsEmail,
    IsObject,
    IsArray,
    ValidateNested,
} from "class-validator";

class UserInfo {
    @IsInt()
    user_id: number;
    @Length(10, 20,{message: 'name的长度不能小于10不能大于20'})
    @IsEmail()
    email: string;
}

class LargeImage {
    @IsString()
    url: string
}

class MyData {
    @IsString()
    @IsNotEmpty({message:'video_id 不能为空'})
    video_id: string;

    @IsObject()
    @ValidateNested()
    @Type(() => UserInfo)
    user_info: UserInfo;

    @IsArray({message:'数组 不能为空'})
    @ValidateNested({each: true})
    @Type(() => LargeImage)
    image_list: LargeImage[];
}

const data: MyData = await fetchMyData()

const dataAsClassInstance = plainToClass(
    MyData, data
);

validate(dataAsClassInstance).then(message => {
    // do something
});

优点:

缺点:

实现原理:

装饰器+反射(通过装饰器给字段加入类型规则元数据,运行时再通过反射获取这些元数据做校验)

方案3-静态 to 动态

通过处理 TS 类型,使之在运行时可用

TS类型自动转换JSON Schema

典型例子有 typescript-json-schema,用法如下:

优点:

缺点:

实现原理:

解析处理 TypeScript AST https://github.com/YousefED/typescript-json-schema/blob/master/typescript-json-schema.ts

编译期从TS类型生成检查代码

在编译期将TS代码转成类型检查能力等价的JS代码,典型例子有 typescript-is、ts-auto-guard,用法如下:

配置 ts-loader 插件:

import typescriptIsTransformer from 'typescript-is/lib/transform-inline/transformer'

...
{
    test: /.ts$/,
    exclude: /node_modules/,
    loader: 'ts-loader',
    options: {
        getCustomTransformers: program => ({
            before: [typescriptIsTransformer(program)]
        })
    }
}
...

编译前源代码:

import { is } from "typescript-is"

interface MyDataType {
    gid: number;
    user_info: {
        user_id: number;
        email: string;
    };
    large_image_list: {
        url: string;
    }[];
}
const data: MyDataType = fetchMyData()
const isRightType = is<MyDataType>(data)

编译产物代码:

Object.defineProperty(exports, "__esModule", { value: true });
const typescript_is_1 = require("typescript-is");
const data = (0, fetchMyData)();
const isRightType = (0, typescript_is_1.is)(data, object => { function _number(object) { ; if (typeof object !== "number")
    return {};
else
    return null; } function _string(object) { ; if (typeof object !== "string")
    return {};
else
    return null; } function _1(object) { ; if (typeof object !== "object" || object === null || Array.isArray(object))
    return {}; {
    if ("user_id" in object) {
        var error = _number(object["user_id"]);
        if (error)
            return error;
    }
    else
        return {};
} {
    if ("email" in object) {
        var error = _string(object["email"]);
        if (error)
            return error;
    }
    else
        return {};
} return null; } function _4(object) { ; if (typeof object !== "object" || object === null || Array.isArray(object))
    return {}; {
    if ("url" in object) {
        var error = _string(object["url"]);
        if (error)
            return error;
    }
    else
        return {};
} return null; } function sa__4_ea_4(object) { ; if (!Array.isArray(object))
    return {}; for (let i = 0; i < object.length; i++) {
    var error = _4(object[i]);
    if (error)
        return error;
} return null; } function _0(object) { ; if (typeof object !== "object" || object === null || Array.isArray(object))
    return {}; {
    if ("video_id" in object) {
        var error = _number(object["video_id"]);
        if (error)
            return error;
    }
    else
        return {};
} {
    if ("user_info" in object) {
        var error = _1(object["user_info"]);
        if (error)
            return error;
    }
    else
        return {};
} {
    if ("image_list" in object) {
        var error = sa__4_ea_4(object["image_list"]);
        if (error)
            return error;
    }
    else
        return {};
} return null; } return _0(object); });

优点:

缺点:

实现原理:

编写 TypeScript Transformer Plugin,运行机制类似 babel 插件(源码->解析语法树->修改语法树->转换)

提取TS类型信息在运行时动态检查

典型的方案有 DeepKit,基本上是把TS类型系统带到了JS运行时:

编译前源代码:

import { is } from '@deepkit/type'

interface MyDataType {
    video_id: string;
    user_info: {
        user_id: number;
        email: string;
    };
    image_list: {
        url: string;
    }[];
}
const data: MyDataType = await fetchMyData()
const isRightType = is<MyDataType>(data)

编译产物代码:

Object.defineProperty(exports, "__esModule", ({ value: true }));
const type_1 = __webpack_require__(/*! @deepkit/type */ "@deepkit/type");
const __ΩMyDataType = ['video_id', 'user_id', 'email', 'user_info', 'url', 'image_list', 'P&4!P&4"'4#&4$M4%P&4&MF4'M'];
const data = (0, fetchMyData)();
const isRes = (0, type_1.is)(data, undefined, undefined, [() => __ΩMyDataType, 'n!']);
console.log('deepkit', isRes);

优点:

缺点:

实现原理:

在编译期将 TypeScript 类型信息转换成字节码(Bytecode),TS 类型信息都被完整保留到了运行时,之后在运行时用一个解释器计算出类型信息,我们在运行时也能使用它提供的丰富 API 反射类型信息,用在如生成 Mock 数据的场景。

import { typeOf, ReflectionKind } from '@deepkit/type';

typeOf<string>(); // {kind: ReflectionKind.string}
typeOf<number>(); // {kind: ReflectionKind.number}
typeOf<boolean>(); // {kind: ReflectionKind.boolean}

typeOf<string | number>(); 
// {kind: ReflectionKind.union, types: [{kind: ReflectionKind.string}, {kind: ReflectionKind.number}]}

class MyClass {
    id: number = 0;
}
typeOf<MyClass>();
//{kind: ReflectionKind.class, classType: MyClass, types: [
//    {kind: ReflectionKind.property, name: 'id', type: {kind: ReflectionKind.number}, default: () => 0}
//]}

import { ReflectionClass } from '@deepkit/type';

class MyClass {
    id: number = 0;
    doIt(arg: string): void {}
}

const reflection = ReflectionClass.from(MyClass);
reflection.getProperty('id').type; // {kind: ReflectionKind.number}
reflection.getProperty('id').isOptional(); //false
reflection.getPropertyNames(): ['id'];

reflection.getMethod('doIt').getReturnType(); //{kind: ReflectionKind.void}
reflection.getMethod('doIt').getParameter('arg').type; //{kind: ReflectionKind.string}

//works with interfaces as well
interface User {
    id: number;
}
const reflection = ReflectionClass.from<User>();

总结

没有十全十美的方案,综合来看当下使用如 zod 这类 API 形式的校验库会比较好,既成熟强大,也兼具灵活和易。,着眼未来 deepkit 似乎很有潜力,它其实是一整套 Web 开发方案,校验只是其中一部分,还有很多充分利用了运行时类型的功能特性。

那以后 TypeScript 会支持运行时类型检查吗?github 上也一直有人提相关的 issue,甚至有人专门建了一个请愿页面,但基本不太可能,因为 design goal 中已明确表示过不会增加任何运行时代码:

Add or rely on run-time type information in programs, or emit different code based on the results of the type system. Instead, encourage programming patterns that do not require run-time metadata.

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8